Week 2 - Wednesday

COMP 4290

Last time

- What did we talk about last time?
- Authentication
- Challenge-response
- Passwords
- Started biometrics

Questions?

Project 1

Adam Garantche Presents

Biometrics

Other biometrics

- Hand geometry readers measure the shape of your hand
- Keystroke dynamics are the patterns that you use when typing
 - Users are quite distinctive, but distractions and injuries can vary patterns a lot
- Combinations of different biometrics are sometimes used
- DNA sequencing is not (yet) fast enough to be used for authentication
- Researchers are finding new biometrics to use

Problems with biometrics

- People assume that they are more secure than they are
- Attacks:
 - Fingerprints can be lifted off a champagne glass
 - Voices can be recorded
 - Iris recognition can be faked with special contact lenses
- Both false positives and false negatives are possible
- Disabilities can prevent people from using some kinds of biometrics
- It's possible to tamper with transmission from the biometric reader
- Biometric characteristics can change
- Identical twins sometimes pose a problem

False positives and false negatives

	Is the Person Claimed	Is Not the Person Claimed	
Test is Positive	а	b	
Test is Negative	С	d	

- Sensitivity is positive results among correct matches
 - a/(a+c)
- Specificity is negative results among people who are not sought
 - d/(b+d)
- Accuracy is how often the test is correct
 - (a + d) / (a + c + b + d)
- Prevalence is how common a condition is
 - (a + c) / (a + c + b + d)

Tokens

- Tokens are physical objects you possess
 - Keys
 - Badges
 - Cell phones
 - RFIDs
- Passive tokens take no action and do not change
 - Example: photo ID
- Active tokens change or interact with surroundings
 - Examples: RFID or magnetic card

Static and dynamic tokens

- The value of a static token does not change
 - Examples: Keys, passports, RFIDS
 - Static tokens are better for onsite authentication and may be easy to forge for remote authentication
- Dynamic tokens have values that change
 - Examples: RSA SecurID, Battle.net Authenticator
 - Every 60 seconds, it displays a different code

Multifactor authentication

- More than one form of authentication may provide increased security
 - You may need to sign on with your password and with a code generated by an RSA SecurID
 - They often need two forms of ID when you're getting a driver's license
- Two-factor authentication is now common for many platforms
 - Often they only ask for the second form of authentication if the computer has not logged on before
- Multifactor authentication is probably more secure, but it adds complexity and possibly annoyance

Federated identity management

- It's annoying to sign on to lots of different services with lots of different authentication mechanisms
- Federated identity management schemes connect a variety of different services with one authentication method
 - Example: free access to journals because you're logged onto Otterbein computers
- Single sign-on is similar, allowing you to log in once, with services sharing authentication information
 - Examples: logging onto Meetup.com with Facebook or Google credentials

Access Control

Access control

- Subjects are human users or programs that are executing on their behalf
- Objects are things that actions can be performed on
 - Files
 - Database fields
 - Directories
 - Hardware devices
- Access modes are the different ways that access can be done: read, write, modify, delete, etc.
- Access control is the process of managing the access modes that subjects can have on objects

Access control goals

- Check every access
 - The user may no longer have rights to a resource
 - The user may have gained rights
- Enforce least privilege
 - Least privilege means you get the bare minimum to get your job done
- Verify acceptable usage
 - Access to an object is not enough: Some actions might be legal and others illegal

Access control issues

- Many issues come up with access control
- Do the correct people have the correct rights? Have statuses changed?
- Granularity is the how specifically you can control rights
 - Maybe you can only give complete rights to an object, not read-only rights
- An audit log tracks who performed what kinds of accesses
- Limited privilege tries to keep accesses from doing big damage
 - Example: sudo in Linux

sudo

- It is possible to temporarily use another user's permissions in Unix using the command sudo
- Users can be given special access to files or commands they normally could not access
- An administrator can run at a normal privilege level and only occasionally run commands using higher privileges
- This strategy prevents the whole system from being corrupted if the administrator gets a virus

Directory based approaches

- Create a directory that lists all the objects a given user can access and their associated rights:
 - Examples: read, write, execute, own
- The own right gives the user the ability to grant others rights to that object
- Problems:
 - Directories can become large
 - How is access revoked?
 - What if two files in different locations in the system have the same name?

Access control lists

- Listing all the objects a user can access can take up too much space
- An alternative is to list all the users that have rights for a specific object
- Most objects only have a few legal users
- Wild cards can make the situation easier
 - Read access can be granted to everyone

Access control matrices

- Both directories and access control lists are equivalent
- Different implementations are used for different kinds of efficiency
- We can also imagine a matrix that holds all subjects and all objects
- Although it is far too inefficient for most systems to be implemented this way, security researchers sometimes use this model for theoretical purposes
 - Can you determine if some sequence of operations could leak read access to your file?
 - Nope, it's impossible!

Access control matrix example

	Objects				
Subjects	file 1	file 2	process 1	process 2	
process 1	read, write, own	read	read, write, execute, own	write	
process 2	append	read, own	read	read, write, execute, own	

Rights

- A few possible rights:
 - Read
 - Write
 - Execute
 - Own
 - Anything else that is useful?
- Some rights allow users to change the rights of others

Brightspace system

What would the access control matrix look like for the Brightspace gradebook system?

Ticket out the Door

Upcoming

Next time...

- Finish access control
- Cryptography basics

Reminders

- Read Section 2.3
- Work on Project 1
- Work on Assignment 1